Important Note! LabVIEW no longer supports the LabVIEW Control Design and Simulation Module. Beginning with LabVIEW 2023 Q1, LabVIEW no longer supports the LabVIEW Control Design and Simulation Module.

Simulation and Control in LabVIEW

Hans-Petter Halvorsen

Contents

- Control System
- PID Controller
- LabVIEW Control Design and Simulation Module
- Practical Examples
 - 1. Order Process Simulation
 - Control System using built-in PID Controller

Introduction

Hans-Petter Halvorsen

Introduction

- We will use LabVIEW and the LabVIEW Control Design and Simulation Module
- We will simulate a 1. Order Process/Differential Equation
- We will create a basic Control System using the built-in PID Controller

Control System

Hans-Petter Halvorsen

The purpose with a Control System is to Control a Dynamic System, e.g., an industrial process, an airplane, a self-driven car, etc. (a Control System is "everywhere").

- r Reference Value, SP (Set-point), SV (Set Value)
- y Measurement Value (MV), Process Value (PV)
- e Error between the reference value and the measurement value (e = r y)
- v Disturbance, makes it more complicated to control the process
- *u* Control Signal from the Controller

PID Controller

Hans-Petter Halvorsen

PID Control

- The PID Controller is the most used controller today
- It is easy to understand and implement
- There are few Tuning Parameters

PID Controller

$$u(t) = K_p e + \frac{K_p}{T_i} \int_0^t e d\tau + K_p T_d \dot{e}$$

Where u is the controller output and e is the control error:

$$e(t) = r(t) - y(t)$$

r is the Reference Signal or Set-point *y* is the Process value, i.e., the Measured value

Tuning Parameters:

- K_p Proportional Gain
- T_i Integral Time [sec.]
- T_d Derivative Time [sec.]

PID Controller

LabVIEW Control Design and Simulation Module

Hans-Petter Halvorsen

- A separate LabVIEW Module
- Design Control Systems
- Simulation of Mathematical Models
- Implementation of Control Systems
- MPC (Model Predictive Control)
- System Identification and Kalman Filter
- etc.

Important Note! LabVIEW no longer supports the LabVIEW Control Design and Simulation Module. Beginning with LabVIEW 2023 Q1, LabVIEW no longer supports the LabVIEW Control Design and Simulation Module.

LabVIEW Control Design and Simulation Module

Solutions ~ Products ~

Persp

HOME / SUPPORT / SOFTWARE AND DRIVER DOWNLOADS

Important Note! LabVIEW no longer supports the LabVIEW Control Design and Simulation Module. Beginning with LabVIEW 2023 Q1, LabVIEW no longer supports the LabVIEW Control Design and Simulation Module.

LabVIEW Control Design and Simulation Module

The LabVIEW Control Design and Simulation Module helps you simulate dynamic systems, design controllers, and deploy control systems to real-time hardware. <u>+ Read More</u>

DOWNLOADS			
			LabVIEW 2022 Q3 Control Design and
Supported OS	Windows	View Readme	Simulation Module
			Release Date
Version ⁽¹⁾	2022 Q3	~	1125122
Included Editions	Full		Included Versions 2022
			> Supported OS
Application Bitness 🕕	32-bit	~	> Language
			> Checksum
Language 🕔	English		DOWNLOAD INSTALL OFFLINE
			File Size

LabVIEW Control Design and Simulation Module

1. Order Process

Hans-Petter Halvorsen

1. Order System

Differential Equation of a 1. order System:

In order to simulate this model in LabVIEW you can make a discrete version of the model, or you can implement it as a "Block Diagram" using the features in LabVIEW Control Design and Simulation Module

1. order Step Response

Model – Block Diagram

The first order differential equation:

$$\dot{x} = -ax + bu$$

Can be described with the following block diagram model:

Model in LabVIEW

Simulation in LabVIEW

Code

<

> .

Control System

Hans-Petter Halvorsen

Control System in LabVIEW

Control System Code

<

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

